Формула КПД электродвигателя
Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.
Характеристики КПД в электродвигателях
Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.
Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 – полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической – Р = А/t, как отношение работы к единице времени.
Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.
Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения.
Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей.
Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.
Управление шаговым двигателем
Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90С, В-класса – до 110С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором межвитковом замыкании статора.
В зависимости от нагрузки КПД электродвигателя может изменять свое значение:
- Для холостого хода – 0;
- При 25% нагрузке – 0,83;
- При 50% нагрузке – 0,87;
- При 75% нагрузке – 0,88;
- При полной 100% нагрузке КПД составляет 0,87.
Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й – 402 В, в 3-й – 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 – 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.
Падение КПД и общие потери в электродвигателе
Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее – на ротор.
Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с вихревыми токами и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.
Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.
Маркировка электродвигателей
Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.
При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.
В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.
Источник: https://electric-220.ru/news/formula_kpd_ehlektrodvigatelja/2016-10-19-1090
Что надо знать про мощность и крутящий момент в автомобиле
Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).
Как рассчитывается мощность двигателя?
Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.
N_дв=M∙ω=2∙π∙M∙n_дв
где:
N_дв – мощность двигателя, кВт;
M – крутящий момент, Нм;
ω – угловая скорость вращения коленчатого вала, рад/сек;
π – математическая постоянная, равная 3,14;
n_дв – частота вращения двигателя, мин-1.
Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.
N_дв=(V_дв∙P_эфф∙n_дв)/120
где:
V_дв – объем двигателя, см3;
P_эфф – эффективное давление в цилиндрах, МПа;
120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).
Для расчета лошадиных сил киловатты умножаем на 0,74.
N_(дв л.с.)=N_дв∙0,74
где:
N_дв л.с. – мощность двигателя в лошадиных силах, л. с.
Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.
На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.
Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.
Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.
: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя
Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.
Что такое крутящий момент
Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).
Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.
У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.
Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.
Что лучше: мощность или крутящий момент
Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.
Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.
Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.
Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.
В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.
Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.
Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.
Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.
Источник: https://topmekhanik.ru/moshhnost-dvigatelya/
Коэффициент полезного действия (КПД) насосов — ХимТех
КПД насосов позволяет повысить энергоэффективность производства и сэкономить деньги. В статье рассмотрено из чего складывается КПД насосов, что на него влияет и как его посчитать. Приводится информация по центробежным (в т.ч. с магнитной муфтой), винтовым, импеллерным и мембранным пневматическим насосам.
Коэффициент полезного действия это характеристика эффективности системы (устройства или машины) в отношении преобразования или передачи энергии, которая показывает совершенство его конструкции и экономичность эксплуатации. Так как насосы перекачивают жидкость посредством преобразования одного вида энергии в другой вид энергии, то они идеально подходят под данное правило, а значит, обладают собственным коэффициентом полезного действия.
Формула
Коэффициент полезного действия не имеет системы измерений и обозначается обычно в процентах. Общий КПД жидкостного насоса определяется произведением КПД его привода (электродвигатель, пневмодвигатель, гидродвигатель) и КПД насосной части. Ƞ = ƞпр * ƞнч
КПД привода насоса это не что иное, как отношение мощности, которую мы получаем на выходном валу двигателя к потребляемой двигателем мощности. Нужно сразу уточнить, что данное отношение не может быть больше единицы, так как потребляемая двигателем мощность всегда больше мощности на выходе. Это обуславливается тем, что в процессе преобразования энергии всегда присутствуют тепловые и механические потери. Ƞпр = P2 / P1
Расчет КПД
Потребляемая мощность зависит от вида и характеристик собственного источника. Если насос имеет электрический привод – электродвигатель, то потребляемая мощность электрическая, если пневмодвигатель, значит потребляемая мощность это мощность нагнетаемого воздуха. Электрическая потребляемая мощность это произведение напряжения на силу тока.
Мощность на выходном валу двигателя, это мощность механическая, полученная вследствие преобразования подведенного электрического или пневматического вида энергии. Данную мощность нужно рассматривать как отношение работы к единице времени.
Так как насосная часть состоит из деталей, узлов и механизмов, а во время её работы происходят различные процессы и присутствуют разные физические явления, то её коэффициент полезного действия необходимо рассматривать как произведение трёх составляющих: механический КПД, гидравлический КПД и объёмный КПД. Ƞнч = ƞм * ƞг * ƞо
Механический КПД
Механический КПД во многом зависит от качества изготовления насоса, от его конструктивных особенностей. Механические потери связанные с работой трущихся частей (в подшипниках, в механическом торцевом уплотнении, в сальниковом уплотнении, в проточной части) снижают данный КПД.
Гидравлический КПД
Гидравлический КПД определяется течением жидкости внутри проточной части насоса, а если точнее гидравлическими потерями, которые возникают во время работы насоса. Например, если шероховатость поверхности стенок насоса увеличена, то жидкости станет сложнее преодолеть сопротивление трения, а значит, скорость течения жидкости будет ниже. Многое зависит и от вида течения жидкости. Возникающий в проточной части насоса турбулентный (вихревой) поток жидкости увеличивает гидравлические потери.
Отношение количества жидкости поступившей в насос через всасывающий патрубок, к количеству жидкости вышедшей из него через напорный патрубок является объёмным КПД насосной части. Объёмный КПД ещё называют КПД подачи, так как его можно рассмотреть как отношение производительностей, действительной к теоретической.
Чтобы потребитель имел возможность определить КПД насоса в конкретной рабочей точке, многие производители насосного оборудования прилагают к диаграммам рабочих характеристик насоса диаграммы с графиками характеристик КПД.
График эффективности насоса на примере Argal TMR 10.15
Кпд промышленных насосов
В данной статье косвенно рассмотрим коэффициент полезного действия насосов различных видов: центробежных, винтовых, импеллерных, мембаранно-пневматических.
Центробежный насос
КПД самых распространенных центробежных насосов во многом зависит от режима их работы и конструктивных особенностей. Максимальным КПД обладают центробежные насосы с приводом большой мощности и высокими рабочими характеристиками. Их эффективность может достигать 92-95 %. Значение мощности двигателя таких центробежных насосов обычно начинается от 10кВт, а насосная часть имеет высокое качество изготовления.
Насос с магнитной муфтой
Насосы с магнитной муфтой имеют схожий КПД. Для данного типа насоса очень важно, чтобы герметичная задняя крышка насоса, располагающаяся между ведущим и ведомым магнитом, была изготовлено из токонепроводящих материалов. Иначе, будут возникать вихревые токи, которые вызывают потерю мощности и снижают общий КПД насоса.
Винтовой насос
Винтовые насосы имеют высокие механические потери. Они в первую очереди связаны с трениями, которые возникают в подшипниковом узле, а также между ротором и статором, но благодаря высоким рабочим характеристикам (расход, напор) данный тип насосов может иметь КПД колеблющийся от 40 до 80 %.
Импеллерный насос
Импеллерные насосы бережно перекачивают жидкость, создавая равномерный ламинарный поток и высокое давление на выходе, но высокие механические потери обусловленные трением гибких лопастей импеллера о внутреннюю поверхность корпуса не позволяет данному типу насосов быть лидером по эффективности.
Мембранно-пневматический насос
Мембранно-пневматические насосы не имеют двигателя и работают от поданного на него сжатого воздуха. Так как требуется дополнительное превращение электрической энергии в энергию сжатого воздуха, то КПД мембранно-пневматического насоса во многом зависит от КПД воздушного компрессора. Обычно КПД поршневых компрессоров составляет 80-92%, лопастных 90-96%. Кроме этого, в самом насосе, в той или иной мере, присутствуют все виды потерь.
Гидравлические потери возникают, когда жидкость через небольшое всасывающее отверстие поступает в рабочую камеру насоса и выходит через отверстие подачи под определенным углом. Здесь поток жидкости сталкивается с внезапным расширением сечения при последующем резком повороте. Механические потери связаны с тем, что основная втулка насоса является парой трения скольжения. Кроме этого имеет место трение жидкости с деталями насоса: клапана, коллектора, мембрана, стенки боковой крышки.
Объемные потери определяются отношением количества жидкости поступившего в насос и количеством жидкости вышедшего из него за два такта (всасывание – нагнетание).
Вывод
Подводя итог данной статьи можно сказать, что эффективность перекачивающих насосов во многом зависит от мощности двигателя насоса, а также от качества изготовления деталей и узлов самого насоса. Среди рассмотренных типов насосов наибольшим КПД обладают высокопроизводительные и высоконапорные центробежные насосы. Наименьшая эффективность у мембранно-пневматических насосов.
Источник: https://YTSpumps.ru/info/articles/spravochnaya/kpd-nasosa/
Полезная мощность
Мощность технического оборудования или энергетических установок (аппаратов, агрегатов), отдаваемая ими для совершения работы, указана в их технических характеристиках. Но это не значит, что вся она используется по прямому назначению для достижения результата. Только полезная мощность расходуется на выполнение работы.
Общее определение мощности
Определение и формула полезной мощности
Стоит рассмотреть понятие полезной мощности и формулу на примере электрической цепи. Та мощность, которую источник питания (ИП), в частности, тока, развивает в замкнутой цепи, будет полной мощностью.
Цепь включает в себя: источник тока, имеющий ЭДС (E), внешнюю цепь с нагрузкой R и внутреннюю цепь ИП, сопротивление которого R0. Формула полной (общей) мощности равна:
Pобщ = E*I.
Здесь I – это значение тока, проходящего по цепи (А), а E – величина ЭДС (В).
Внимание! Падение напряжения на каждом из участков будет равно U и U0, соответственно.
Значит, формула примет вид:
Pобщ = E*I = (U + U0) *I = U*I + U0*I.
Видно, что значение произведения U*I равняется мощности, отдаваемой источником на нагрузке, и соответствует полезной мощности Pпол.
Величина, равная произведению U0*I, соответствует мощности, которая теряется внутри ИП на нагрев и преодоление внутреннего сопротивления R0. Это мощность потерь P0.
Подставляемые в формулу значения показывают, что сумма полезной и потерянной мощностей составляют общую мощность ИП:
Pобщ=Pпол+P0.
Важно! При работе любого аппарата (механического или электрического) полезной мощностью будет та, которая останется для совершения нужной работы после преодоления факторов, вызывающих потери (нагрев, трение, противодействующие силы).
Параметры источника питания
На практике часто приходится думать, какой должна быть мощность источника тока, сколько нужно ватт (вт) или киловатт (квт) для обеспечения бесперебойной работы устройства. Для понимания сути нужно иметь представления о таких понятиях, применяемых в физике, как:
- полная энергия цепи;
- ЭДС и напряжение;
- внутреннее сопротивление источника питания;
- потери внутри ИП;
- полезная мощность.
Независимо от того, какую энергию выдаёт источник (механическую, электрическую, тепловую), мощность его должна подбираться с небольшим запасом (5-10%).
Полная энергия цепи
При включении в цепь нагрузки, которая будет потреблять энергию от источника тока (ИТ), ток будет совершать работу. Энергия, выделяемая на всех включенных в цепь потребителях и элементах цепи (провода, электронные компоненты т.д.), носит название полной. Источник энергии может быть любой: генератор, аккумулятор, тепловой котёл. Цифра значения полной энергии будет складываться из энергии, затрачиваемой источником на потери, и количества, затрачиваемого на выполнение конкретной работы.
ЭДС и напряжение
В чём разница между этими двумя понятиями?
ЭДС – электродвижущая сила, это напряжение, которое сторонние силы (химическая реакция, электромагнитная индукция) создают внутри источника тока (ИТ). ЭДС – это сила перемещения электрических зарядов в ИТ.
К сведению. Измерить значение E (ЭДС) представляется возможным только в режиме холостого хода (х.х.). Подключение любой нагрузки вызывает потерю напряжения внутри ИП.
Напряжение (U) – физическая величина, представляющая собой разность потенциалов ϕ1 и ϕ2 на выходе источника напряжения (ИН).
Определение понятия полной мощности применяют не только в отношении электрических цепей. Оно применимо и по отношению к электродвигателям, трансформаторам и прочим устройствам, способным потреблять, как активную, так и реактивную составляющую энергии.
Потери внутри источника питания
Подобные потери происходят на внутреннем сопротивлении двухполюсника. У аккумулятора это сопротивление электролита, у генератора – обмоточное сопротивление, провода выводов которого выходят из корпуса.
Внутреннее сопротивление источника питания
Взять и просто измерить R0 тестером не получится, узнать его обязательно нужно для вычисления потерь Р0. Поэтому применяют косвенные методы.
Косвенный метод определения R0 заключается в следующем:
- в режиме х.х. замеряют E (В);
- при включенной нагрузке Rн (Ом) измеряют Uвых (В) и ток I (А);
- падение напряжения внутри источника считают по формуле:
U0=E-Uвых.
На последнем этапе находят R0=U0/I.
Взаимосвязь полезной мощности и КПД
Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.
Формула имеет вид:
η = А/Q,
где:
- А – полезная работа (энергия);
- Q – затраченная энергия.
По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:
- электродвигатель – до 98%;
- ДВС – до 40%;
- паровая турбина – до 30%.
Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.
Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого.
Получение максимальной энергии на выходе ИП
К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.
Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.
Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.
График зависимости Рпол и η от тока в цепи
Достижение максимального КПД
Формула КПД источника тока имеет вид:
η = Pн/Pобщ = R/Rн+r,
где:
- Pн – мощность нагрузки;
- Pобщ – общая мощность;
- R – полное сопротивление цепи;
- Rн – сопротивление нагрузки;
- r – внутреннее сопротивление ИТ.
Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.
Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:
- изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
- приближения их значений к параметрам окружающей среды по окончании расширения.
Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.
К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.
Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:
- некоторая часть давления уходит на внешнюю среду;
- достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
- нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
- использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.
Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:
- ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
- наиболее полно перед расширением использовать оба вида энергии рабочего тела;
- осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.
Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.
КПД двигателя внутреннего сгорания
Коэффициент полезного действия нагрузки
Какой бы ни была мощность источника, кпд электроприборов никогда не будет равна 100%.
Исключение. Принцип теплового насоса, применяемый в работе холодильников и кондиционеров, приближает их КПД к 100%. Там нагрев одного радиатора приводит к охлаждению другого.
В остальном случае энергия уходит на посторонние эффекты. Чтобы уменьшить этот расход, нужно обращать внимание на сопутствующие факторы:
- при обустройстве освещения – на конструкцию светильников, устройство отражателей и цвет окраски помещений (отражающий или светопоглощающий);
- при организации отопления – на теплоизоляцию тепловодов, установку рекуперационных вытяжных устройств, утепление стен, потолка и пола, монтаж качественных оконных стеклопакетов;
- при организации электропроводки – правильно подбирать марку и сечение проводников соответственно будущей подключаемой нагрузке;
- при монтаже электродвигателей, трансформаторов и других потребителей переменного тока – на значение cosϕ.
Снижение затрат на потери однозначно приводит к увеличению коэффициента полезного действия при совершении источником энергии работы на нагрузку.
Снижение влияния факторов, вызывающих потери мощности, увеличивает процент полезной мощности, необходимой для совершения работы. Это возможно при выявлении причин потерь и их устранении.
Источник: https://amperof.ru/teoriya/poleznaya-moshhnost.html
Кпд двс и электродвигателя
Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.
Онлайн расчет характеристик трехфазных электродвигателей
Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:
Расчет мощности трехфазного электродвигателя
Полученный результат можно округлить до ближайшего стандартного значения мощности.
Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.
Расчет мощности двигателя производится по следующей формуле:
P=√3UIcosφη
где:
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
2. Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет тока трехфазного электродвигателя
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
где:
- К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
3. Расчет коэффициента мощности электродвигателя
Онлайн расчет коэффициента мощности (cosφ) электродвигателя
Расчет коэффициента мощности трехфазного электродвигателя
Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
cosφ=P/√3UIη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
4. Расчет КПД электродвигателя
Онлайн расчет КПД (коэффициента полезного действия) электродвигателя
Расчет КПД трехфазного электродвигателя
Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:
η=P/√3UIcosφ
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы
Источник: https://elektroshkola.ru/kalkulyatory/onlajn-raschet-xarakteristik-trexfaznyx-elektrodvigatelej/
4 варианта двигателей – возможно ли идеальное значение КПД?
Среди множества полезных характеристик, кпд двигателя имеет немаловажное значение. От этого показателя зависит продолжительность и эффективность силового агрегата.
Кпд двигателя внутреннего сгорания – что это?
Во время работы, мотор превращает тепловую энергию, которая получилась от сгорания топлива, в механическую работу. Современные двигатели намного эффективнее, чем тем, которые были изготовлены лет 10 назад. Таким образом, коэффициент полезного действия рассчитывается на основании теххарактеристик, а также других показателей.
КПД это процентное отношение полезной работы к полной. Другими словами, это преобразование мощности, которая поступает на коленчатый вал двигателя, к мощности, которую получает поршень от сгорания топлива.
Все механизмы предназначены для выполнения определенной работы, которую называют полезной. Однако при этом часть энергии растрачивается. Для того чтобы выяснить эффективность работы, вполне подойдет формула кпд в физике: ɳ= А1/А2×100%, где А1 – полезная работа, выполненная машиной или двигателем, А2 – вся затраченная работа. При этом кпд обозначается символом η.
Эффективность кпд измеряется в процентах и зависит от различных потерь, которые происходят в процессе работы.
Потери мощности — куда и почему
- топливная эффективность – топливо сгорает не полностью, небольшая его часть просто вылетает в выхлопную трубу. На этом этапе теряется 25%;
- тепловая – двигатель греет не только себя, но и другие его элементы. Для получения тепла требуется энергия, это и есть потери. На них тратится еще 35%;
- механические – во время движения механизмов возникает трение. Конечно, смазки ослабляют его действие, однако полностью победить его пока не удалось. Это еще 20%.
На выходе получаем, что кпд двигателя составляет всего 20-25%.
Фактически, если автомобиль расходует 10 л бензина на 100км, то на работу уйдет всего 2 л, остальное составляют потери.
Сравнение КПД тепловых двигателей — бензиновый и дизельный
Если сравнивать полезную мощность, то сразу отметим, что бензиновый не такой эффективный. Его величина составляет всего 25-30%, в то время как у дизельного она -40%.
Несмотря на схожесть агрегатов, у них различные виды смесебразования.
- У бензинового мотора поршни работают при более высоких температурах, что требует хорошего охлаждения. Поэтому тепловая энергия, которая могла бы трансформироваться в механическую, тратится впустую, тем самым снижая КПД.
- У дизельного – рабочая смесь воспламеняется при сжатии, поэтому давление в цилиндрах намного выше. Кроме того, мотор намного меньше и экологичнее.При низких оборотах и большом рабочем объеме уровень КПД может возрасти до 50%.
Асинхронный двигатель и стирлинг
Сегодня на рынке представлены асинхронные машины, большей частью которых являются элетрические. Асинхронный механизм преобразовывает электрическую энергию в механическую.
Основные их достоинства:
- простота изготовления и относительно низкая стоимость;
- высокая надежность;
- эксплуатационные затраты небольшие.
Формула кпд рассчитывается следующим образом: η = P2 / P1 = (P1 — (Pоб — Pс — Pмх — Pд)) / P1, где Роб =Pоб1 + Роб2 – общие потери в обмотках асинхронного мотора. Для большинства современных механизмов такого типа, коэффициент достигает 80 – 90%.
Еще одним двигателем внутреннего сгорания, который может работать от любого источника тепла, является двигатель Стирлинга.
Следует учесть, что такие механизмы используют на космических аппаратах и современных подводных лодках.
Он работает при любых температурах, не требует дополнительных систем для запуска, при этом их коэффициент полезного действия выше на 50-70, чем обычных двигателей.
Максимальное значение кпд идеального двигателя
Как найти кпд двигателя, чье значение было бы идеальным и равнялось 100%. Возможно ли такое? Ответ на этот вопрос дал еще в 1824 г. инженер С. Карно. В своих разработках он придумал идеальную машину, где формула кпд теплового двигателя выглядит так: η=(T1 — Т2)/ T1.
В результате было выяснено, что достичь 100% коэффициента можно лишь в том случае, если температура охладителя будет равна абсолютному нулю, а это невозможно, поскольку она не может быть ниже температуры воздуха.
Как повысить КПД?
Повышение этого значения – важная техническая задача. Теоретически его можно повысить за счет снижения трения деталей двигателя, уменьшения теплопотерь. В дизелях это достигается за счет турбонаддува. В этом случае уровень полезной энергии возрастает до 50%.
Как видим, КПД двигателя полностью зависит от его типа и конструкции. Ученые же считают, что будущее за электрическими вариантами, поэтому изобретение идеального механизма – вопрос будущего.
Источник: http://motorstory.ru/operation/manual-operation/4-varianta-dvigatelej-vozmozhno-li-idealnoe-znachenie-kpd/
Коэффициент полезного действия
Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/
Коэффициент полезного действия (КПД) — формулы и расчеты
Коэффициент полезного действия (КПД) — формулы и расчеты
Коэффициент полезного действия (КПД) — формулы и расчеты
Коэффициент полезного действия (КПД) — формулы и расчеты
Трактовка понятия
Формула КПД электродвигателя
Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.
Характеристики КПД в электродвигателях
Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.
Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 – полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической – Р = А/t, как отношение работы к единице времени.
Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.
Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения.
Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей.
Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.
Управление шаговым двигателем
Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90С, В-класса – до 110С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором межвитковом замыкании статора.
В зависимости от нагрузки КПД электродвигателя может изменять свое значение:
- Для холостого хода – 0;
- При 25% нагрузке – 0,83;
- При 50% нагрузке – 0,87;
- При 75% нагрузке – 0,88;
- При полной 100% нагрузке КПД составляет 0,87.
Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й – 402 В, в 3-й – 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 – 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.
Падение КПД и общие потери в электродвигателе
Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее – на ротор.
Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с вихревыми токами и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.
Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.
Маркировка электродвигателей
Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.
При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.
В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.
Источник: https://electric-220.ru/news/formula_kpd_ehlektrodvigatelja/2016-10-19-1090
Что надо знать про мощность и крутящий момент в автомобиле
Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).
Как рассчитывается мощность двигателя?
Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.
N_дв=M∙ω=2∙π∙M∙n_дв
где:
N_дв – мощность двигателя, кВт;
M – крутящий момент, Нм;
ω – угловая скорость вращения коленчатого вала, рад/сек;
π – математическая постоянная, равная 3,14;
n_дв – частота вращения двигателя, мин-1.
Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.
N_дв=(V_дв∙P_эфф∙n_дв)/120
где:
V_дв – объем двигателя, см3;
P_эфф – эффективное давление в цилиндрах, МПа;
120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).
Для расчета лошадиных сил киловатты умножаем на 0,74.
N_(дв л.с.)=N_дв∙0,74
где:
N_дв л.с. – мощность двигателя в лошадиных силах, л. с.
Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.
На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.
Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.
Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.
: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя
Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.
Что такое крутящий момент
Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).
Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.
У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.
Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.
Что лучше: мощность или крутящий момент
Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.
Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.
Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.
Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.
В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.
Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.
Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.
Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.
Источник: https://topmekhanik.ru/moshhnost-dvigatelya/
Коэффициент полезного действия (КПД) насосов — ХимТех
КПД насосов позволяет повысить энергоэффективность производства и сэкономить деньги. В статье рассмотрено из чего складывается КПД насосов, что на него влияет и как его посчитать. Приводится информация по центробежным (в т.ч. с магнитной муфтой), винтовым, импеллерным и мембранным пневматическим насосам.
Коэффициент полезного действия это характеристика эффективности системы (устройства или машины) в отношении преобразования или передачи энергии, которая показывает совершенство его конструкции и экономичность эксплуатации. Так как насосы перекачивают жидкость посредством преобразования одного вида энергии в другой вид энергии, то они идеально подходят под данное правило, а значит, обладают собственным коэффициентом полезного действия.
Формула
Коэффициент полезного действия не имеет системы измерений и обозначается обычно в процентах. Общий КПД жидкостного насоса определяется произведением КПД его привода (электродвигатель, пневмодвигатель, гидродвигатель) и КПД насосной части. Ƞ = ƞпр * ƞнч
КПД привода насоса это не что иное, как отношение мощности, которую мы получаем на выходном валу двигателя к потребляемой двигателем мощности. Нужно сразу уточнить, что данное отношение не может быть больше единицы, так как потребляемая двигателем мощность всегда больше мощности на выходе. Это обуславливается тем, что в процессе преобразования энергии всегда присутствуют тепловые и механические потери. Ƞпр = P2 / P1
Расчет КПД
Потребляемая мощность зависит от вида и характеристик собственного источника. Если насос имеет электрический привод – электродвигатель, то потребляемая мощность электрическая, если пневмодвигатель, значит потребляемая мощность это мощность нагнетаемого воздуха. Электрическая потребляемая мощность это произведение напряжения на силу тока.
Мощность на выходном валу двигателя, это мощность механическая, полученная вследствие преобразования подведенного электрического или пневматического вида энергии. Данную мощность нужно рассматривать как отношение работы к единице времени.
Так как насосная часть состоит из деталей, узлов и механизмов, а во время её работы происходят различные процессы и присутствуют разные физические явления, то её коэффициент полезного действия необходимо рассматривать как произведение трёх составляющих: механический КПД, гидравлический КПД и объёмный КПД. Ƞнч = ƞм * ƞг * ƞо
Механический КПД
Механический КПД во многом зависит от качества изготовления насоса, от его конструктивных особенностей. Механические потери связанные с работой трущихся частей (в подшипниках, в механическом торцевом уплотнении, в сальниковом уплотнении, в проточной части) снижают данный КПД.
Гидравлический КПД
Гидравлический КПД определяется течением жидкости внутри проточной части насоса, а если точнее гидравлическими потерями, которые возникают во время работы насоса. Например, если шероховатость поверхности стенок насоса увеличена, то жидкости станет сложнее преодолеть сопротивление трения, а значит, скорость течения жидкости будет ниже. Многое зависит и от вида течения жидкости. Возникающий в проточной части насоса турбулентный (вихревой) поток жидкости увеличивает гидравлические потери.
Отношение количества жидкости поступившей в насос через всасывающий патрубок, к количеству жидкости вышедшей из него через напорный патрубок является объёмным КПД насосной части. Объёмный КПД ещё называют КПД подачи, так как его можно рассмотреть как отношение производительностей, действительной к теоретической.
Чтобы потребитель имел возможность определить КПД насоса в конкретной рабочей точке, многие производители насосного оборудования прилагают к диаграммам рабочих характеристик насоса диаграммы с графиками характеристик КПД.
График эффективности насоса на примере Argal TMR 10.15
Кпд промышленных насосов
В данной статье косвенно рассмотрим коэффициент полезного действия насосов различных видов: центробежных, винтовых, импеллерных, мембаранно-пневматических.
Центробежный насос
КПД самых распространенных центробежных насосов во многом зависит от режима их работы и конструктивных особенностей. Максимальным КПД обладают центробежные насосы с приводом большой мощности и высокими рабочими характеристиками. Их эффективность может достигать 92-95 %. Значение мощности двигателя таких центробежных насосов обычно начинается от 10кВт, а насосная часть имеет высокое качество изготовления.
Насос с магнитной муфтой
Насосы с магнитной муфтой имеют схожий КПД. Для данного типа насоса очень важно, чтобы герметичная задняя крышка насоса, располагающаяся между ведущим и ведомым магнитом, была изготовлено из токонепроводящих материалов. Иначе, будут возникать вихревые токи, которые вызывают потерю мощности и снижают общий КПД насоса.
Винтовой насос
Винтовые насосы имеют высокие механические потери. Они в первую очереди связаны с трениями, которые возникают в подшипниковом узле, а также между ротором и статором, но благодаря высоким рабочим характеристикам (расход, напор) данный тип насосов может иметь КПД колеблющийся от 40 до 80 %.
Импеллерный насос
Импеллерные насосы бережно перекачивают жидкость, создавая равномерный ламинарный поток и высокое давление на выходе, но высокие механические потери обусловленные трением гибких лопастей импеллера о внутреннюю поверхность корпуса не позволяет данному типу насосов быть лидером по эффективности.
Мембранно-пневматический насос
Мембранно-пневматические насосы не имеют двигателя и работают от поданного на него сжатого воздуха. Так как требуется дополнительное превращение электрической энергии в энергию сжатого воздуха, то КПД мембранно-пневматического насоса во многом зависит от КПД воздушного компрессора. Обычно КПД поршневых компрессоров составляет 80-92%, лопастных 90-96%. Кроме этого, в самом насосе, в той или иной мере, присутствуют все виды потерь.
Гидравлические потери возникают, когда жидкость через небольшое всасывающее отверстие поступает в рабочую камеру насоса и выходит через отверстие подачи под определенным углом. Здесь поток жидкости сталкивается с внезапным расширением сечения при последующем резком повороте. Механические потери связаны с тем, что основная втулка насоса является парой трения скольжения. Кроме этого имеет место трение жидкости с деталями насоса: клапана, коллектора, мембрана, стенки боковой крышки.
Объемные потери определяются отношением количества жидкости поступившего в насос и количеством жидкости вышедшего из него за два такта (всасывание – нагнетание).
Вывод
Подводя итог данной статьи можно сказать, что эффективность перекачивающих насосов во многом зависит от мощности двигателя насоса, а также от качества изготовления деталей и узлов самого насоса. Среди рассмотренных типов насосов наибольшим КПД обладают высокопроизводительные и высоконапорные центробежные насосы. Наименьшая эффективность у мембранно-пневматических насосов.
Источник: https://YTSpumps.ru/info/articles/spravochnaya/kpd-nasosa/
Полезная мощность
Мощность технического оборудования или энергетических установок (аппаратов, агрегатов), отдаваемая ими для совершения работы, указана в их технических характеристиках. Но это не значит, что вся она используется по прямому назначению для достижения результата. Только полезная мощность расходуется на выполнение работы.
Общее определение мощности
Определение и формула полезной мощности
Стоит рассмотреть понятие полезной мощности и формулу на примере электрической цепи. Та мощность, которую источник питания (ИП), в частности, тока, развивает в замкнутой цепи, будет полной мощностью.
Цепь включает в себя: источник тока, имеющий ЭДС (E), внешнюю цепь с нагрузкой R и внутреннюю цепь ИП, сопротивление которого R0. Формула полной (общей) мощности равна:
Pобщ = E*I.
Здесь I – это значение тока, проходящего по цепи (А), а E – величина ЭДС (В).
Внимание! Падение напряжения на каждом из участков будет равно U и U0, соответственно.
Значит, формула примет вид:
Pобщ = E*I = (U + U0) *I = U*I + U0*I.
Видно, что значение произведения U*I равняется мощности, отдаваемой источником на нагрузке, и соответствует полезной мощности Pпол.
Величина, равная произведению U0*I, соответствует мощности, которая теряется внутри ИП на нагрев и преодоление внутреннего сопротивления R0. Это мощность потерь P0.
Подставляемые в формулу значения показывают, что сумма полезной и потерянной мощностей составляют общую мощность ИП:
Pобщ=Pпол+P0.
Важно! При работе любого аппарата (механического или электрического) полезной мощностью будет та, которая останется для совершения нужной работы после преодоления факторов, вызывающих потери (нагрев, трение, противодействующие силы).
Параметры источника питания
На практике часто приходится думать, какой должна быть мощность источника тока, сколько нужно ватт (вт) или киловатт (квт) для обеспечения бесперебойной работы устройства. Для понимания сути нужно иметь представления о таких понятиях, применяемых в физике, как:
- полная энергия цепи;
- ЭДС и напряжение;
- внутреннее сопротивление источника питания;
- потери внутри ИП;
- полезная мощность.
Независимо от того, какую энергию выдаёт источник (механическую, электрическую, тепловую), мощность его должна подбираться с небольшим запасом (5-10%).
Полная энергия цепи
При включении в цепь нагрузки, которая будет потреблять энергию от источника тока (ИТ), ток будет совершать работу. Энергия, выделяемая на всех включенных в цепь потребителях и элементах цепи (провода, электронные компоненты т.д.), носит название полной. Источник энергии может быть любой: генератор, аккумулятор, тепловой котёл. Цифра значения полной энергии будет складываться из энергии, затрачиваемой источником на потери, и количества, затрачиваемого на выполнение конкретной работы.
ЭДС и напряжение
В чём разница между этими двумя понятиями?
ЭДС – электродвижущая сила, это напряжение, которое сторонние силы (химическая реакция, электромагнитная индукция) создают внутри источника тока (ИТ). ЭДС – это сила перемещения электрических зарядов в ИТ.
К сведению. Измерить значение E (ЭДС) представляется возможным только в режиме холостого хода (х.х.). Подключение любой нагрузки вызывает потерю напряжения внутри ИП.
Напряжение (U) – физическая величина, представляющая собой разность потенциалов ϕ1 и ϕ2 на выходе источника напряжения (ИН).
Определение понятия полной мощности применяют не только в отношении электрических цепей. Оно применимо и по отношению к электродвигателям, трансформаторам и прочим устройствам, способным потреблять, как активную, так и реактивную составляющую энергии.
Потери внутри источника питания
Подобные потери происходят на внутреннем сопротивлении двухполюсника. У аккумулятора это сопротивление электролита, у генератора – обмоточное сопротивление, провода выводов которого выходят из корпуса.
Внутреннее сопротивление источника питания
Взять и просто измерить R0 тестером не получится, узнать его обязательно нужно для вычисления потерь Р0. Поэтому применяют косвенные методы.
Косвенный метод определения R0 заключается в следующем:
- в режиме х.х. замеряют E (В);
- при включенной нагрузке Rн (Ом) измеряют Uвых (В) и ток I (А);
- падение напряжения внутри источника считают по формуле:
U0=E-Uвых.
На последнем этапе находят R0=U0/I.
Взаимосвязь полезной мощности и КПД
Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.
Формула имеет вид:
η = А/Q,
где:
- А – полезная работа (энергия);
- Q – затраченная энергия.
По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:
- электродвигатель – до 98%;
- ДВС – до 40%;
- паровая турбина – до 30%.
Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.
Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого.
Получение максимальной энергии на выходе ИП
К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.
Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.
Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.
График зависимости Рпол и η от тока в цепи
Достижение максимального КПД
Формула КПД источника тока имеет вид:
η = Pн/Pобщ = R/Rн+r,
где:
- Pн – мощность нагрузки;
- Pобщ – общая мощность;
- R – полное сопротивление цепи;
- Rн – сопротивление нагрузки;
- r – внутреннее сопротивление ИТ.
Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.
Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:
- изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
- приближения их значений к параметрам окружающей среды по окончании расширения.
Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.
К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.
Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:
- некоторая часть давления уходит на внешнюю среду;
- достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
- нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
- использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.
Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:
- ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
- наиболее полно перед расширением использовать оба вида энергии рабочего тела;
- осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.
Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.
КПД двигателя внутреннего сгорания
Коэффициент полезного действия нагрузки
Какой бы ни была мощность источника, кпд электроприборов никогда не будет равна 100%.
Исключение. Принцип теплового насоса, применяемый в работе холодильников и кондиционеров, приближает их КПД к 100%. Там нагрев одного радиатора приводит к охлаждению другого.
В остальном случае энергия уходит на посторонние эффекты. Чтобы уменьшить этот расход, нужно обращать внимание на сопутствующие факторы:
- при обустройстве освещения – на конструкцию светильников, устройство отражателей и цвет окраски помещений (отражающий или светопоглощающий);
- при организации отопления – на теплоизоляцию тепловодов, установку рекуперационных вытяжных устройств, утепление стен, потолка и пола, монтаж качественных оконных стеклопакетов;
- при организации электропроводки – правильно подбирать марку и сечение проводников соответственно будущей подключаемой нагрузке;
- при монтаже электродвигателей, трансформаторов и других потребителей переменного тока – на значение cosϕ.
Снижение затрат на потери однозначно приводит к увеличению коэффициента полезного действия при совершении источником энергии работы на нагрузку.
Снижение влияния факторов, вызывающих потери мощности, увеличивает процент полезной мощности, необходимой для совершения работы. Это возможно при выявлении причин потерь и их устранении.
Источник: https://amperof.ru/teoriya/poleznaya-moshhnost.html
Кпд двс и электродвигателя
Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.
Онлайн расчет характеристик трехфазных электродвигателей
1. Расчет мощности электродвигателя
Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:
Расчет мощности трехфазного электродвигателя
Полученный результат можно округлить до ближайшего стандартного значения мощности.
Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.
Расчет мощности двигателя производится по следующей формуле:
P=√3UIcosφη
где:
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
2. Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет тока трехфазного электродвигателя
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
где:
- К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
3. Расчет коэффициента мощности электродвигателя
Онлайн расчет коэффициента мощности (cosφ) электродвигателя
Расчет коэффициента мощности трехфазного электродвигателя
Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
cosφ=P/√3UIη
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
4. Расчет КПД электродвигателя
Онлайн расчет КПД (коэффициента полезного действия) электродвигателя
Расчет КПД трехфазного электродвигателя
Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:
η=P/√3UIcosφ
где:
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы
Источник: https://elektroshkola.ru/kalkulyatory/onlajn-raschet-xarakteristik-trexfaznyx-elektrodvigatelej/
4 варианта двигателей – возможно ли идеальное значение КПД?
Среди множества полезных характеристик, кпд двигателя имеет немаловажное значение. От этого показателя зависит продолжительность и эффективность силового агрегата.
Кпд двигателя внутреннего сгорания – что это?
Во время работы, мотор превращает тепловую энергию, которая получилась от сгорания топлива, в механическую работу. Современные двигатели намного эффективнее, чем тем, которые были изготовлены лет 10 назад. Таким образом, коэффициент полезного действия рассчитывается на основании теххарактеристик, а также других показателей.
КПД это процентное отношение полезной работы к полной. Другими словами, это преобразование мощности, которая поступает на коленчатый вал двигателя, к мощности, которую получает поршень от сгорания топлива.
Все механизмы предназначены для выполнения определенной работы, которую называют полезной. Однако при этом часть энергии растрачивается. Для того чтобы выяснить эффективность работы, вполне подойдет формула кпд в физике: ɳ= А1/А2×100%, где А1 – полезная работа, выполненная машиной или двигателем, А2 – вся затраченная работа. При этом кпд обозначается символом η.
Эффективность кпд измеряется в процентах и зависит от различных потерь, которые происходят в процессе работы.
Потери мощности — куда и почему
- топливная эффективность – топливо сгорает не полностью, небольшая его часть просто вылетает в выхлопную трубу. На этом этапе теряется 25%;
- тепловая – двигатель греет не только себя, но и другие его элементы. Для получения тепла требуется энергия, это и есть потери. На них тратится еще 35%;
- механические – во время движения механизмов возникает трение. Конечно, смазки ослабляют его действие, однако полностью победить его пока не удалось. Это еще 20%.
На выходе получаем, что кпд двигателя составляет всего 20-25%.
Фактически, если автомобиль расходует 10 л бензина на 100км, то на работу уйдет всего 2 л, остальное составляют потери.
Сравнение КПД тепловых двигателей — бензиновый и дизельный
Если сравнивать полезную мощность, то сразу отметим, что бензиновый не такой эффективный. Его величина составляет всего 25-30%, в то время как у дизельного она -40%.
Несмотря на схожесть агрегатов, у них различные виды смесебразования.
- У бензинового мотора поршни работают при более высоких температурах, что требует хорошего охлаждения. Поэтому тепловая энергия, которая могла бы трансформироваться в механическую, тратится впустую, тем самым снижая КПД.
- У дизельного – рабочая смесь воспламеняется при сжатии, поэтому давление в цилиндрах намного выше. Кроме того, мотор намного меньше и экологичнее.При низких оборотах и большом рабочем объеме уровень КПД может возрасти до 50%.
Асинхронный двигатель и стирлинг
Сегодня на рынке представлены асинхронные машины, большей частью которых являются элетрические. Асинхронный механизм преобразовывает электрическую энергию в механическую.
Основные их достоинства:
- простота изготовления и относительно низкая стоимость;
- высокая надежность;
- эксплуатационные затраты небольшие.
Формула кпд рассчитывается следующим образом: η = P2 / P1 = (P1 — (Pоб — Pс — Pмх — Pд)) / P1, где Роб =Pоб1 + Роб2 – общие потери в обмотках асинхронного мотора. Для большинства современных механизмов такого типа, коэффициент достигает 80 – 90%.
Еще одним двигателем внутреннего сгорания, который может работать от любого источника тепла, является двигатель Стирлинга.
Следует учесть, что такие механизмы используют на космических аппаратах и современных подводных лодках.
Он работает при любых температурах, не требует дополнительных систем для запуска, при этом их коэффициент полезного действия выше на 50-70, чем обычных двигателей.
Максимальное значение кпд идеального двигателя
Как найти кпд двигателя, чье значение было бы идеальным и равнялось 100%. Возможно ли такое? Ответ на этот вопрос дал еще в 1824 г. инженер С. Карно. В своих разработках он придумал идеальную машину, где формула кпд теплового двигателя выглядит так: η=(T1 — Т2)/ T1.
В результате было выяснено, что достичь 100% коэффициента можно лишь в том случае, если температура охладителя будет равна абсолютному нулю, а это невозможно, поскольку она не может быть ниже температуры воздуха.
Как повысить КПД?
Повышение этого значения – важная техническая задача. Теоретически его можно повысить за счет снижения трения деталей двигателя, уменьшения теплопотерь. В дизелях это достигается за счет турбонаддува. В этом случае уровень полезной энергии возрастает до 50%.
Как видим, КПД двигателя полностью зависит от его типа и конструкции. Ученые же считают, что будущее за электрическими вариантами, поэтому изобретение идеального механизма – вопрос будущего.
Источник: http://motorstory.ru/operation/manual-operation/4-varianta-dvigatelej-vozmozhno-li-idealnoe-znachenie-kpd/
Коэффициент полезного действия
Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/
Коэффициент полезного действия (КПД) — формулы и расчеты
Коэффициент полезного действия (КПД) — формулы и расчеты
Трактовка понятия
Трактовка понятия
Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:
- А1 — полезная работу, которую выполняет машина либо мотор;
- А2 — общий цикл работы;
- η — обозначение КПД.
Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.
В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:
- Q1 — теплота, полученная от нагревательного элемента;
- Q2 — теплота, отданная холодильной установке.
Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.
Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.
Мощность разных устройств
Мощность разных устройств
По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.
При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.
Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:
- Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
- В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.
Асинхронные механизмы
Асинхронные механизмы
Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:
- простое изготовление;
- низкая цена;
- надёжность;
- незначительные эксплуатационные затраты.
Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.
Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.
Значения показателя
Значения показателя
В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.
На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.
Мощность стандартного двигателя увеличивается следующими способами:
- подключение к системе многоцилиндрового агрегата;
- применение специального топлива;
- замена некоторых деталей;
- перенос места сжигания бензина.
КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.